

RBHOF, v. 1, n. 1, p. 11-19, jan./jun. 2025

DIAGNÓSTICO ULTRASSONOGRÁFICO POINT OF CARE (POCUS) COM INTELIGÊNCIA ARTIFICIAL NA ESTÉTICA FACIAL

Diagnosis ultrasounds point of care (POCUS) with artificial intelligence in facial aesthetics

Gisele Rosada Dônola FURTADO¹, Ana Paula Barbosa de LIMA²; Renata Cristina Faria Ribeiro de CASTRO³, Germana DAL PONTE⁴.

RESUMO

O uso da ultrassonografia point of care (POCUS) com inteligência artificial (IA) já é realidade nos aparelhos ultraportáteis POCUS para os clínicos que atuam na estética facial. A face apresenta diferentes estratigrafias nas suas regiões, nas quais identificamos uma arquitetura vascular complexa e anastomosada, podendo ser verificado e diagnosticado pela IA inserida no POCUS. O profissional da estética facial precisa visualizar a anatomia tridimensionalmente em todos os momentos operatórios, prevenindo complicações e a insatisfação do paciente.

Palavras-chave: Harmonização Orofacial; Inteligência Artificial; Estética Facial; Ultrassonografia na Estética; Anatomia Facial.

ABSTRACT

The use of point-of-care ultrasonography (POCUS) combined with artificial intelligence (AI) is now a reality in ultraportable POCUS devices for clinicians working in facial aesthetics. The face exhibits different stratigraphies across its regions, characterized by a complex and anastomosed vascular architecture, which can be identified and diagnosed by AI-integrated POCUS. Aesthetic professionals must visualize the anatomy in three dimensions during all operative stages to prevent complications and ensure patient satisfaction.

Keywords: Orofacial Harmonization; Artificial Intelligence; Facial Aesthetics; Ultrasound in Aesthetics; Facial Anatomy.

¹ UNIFAJ - Centro Universitário de Jaguariúna

² Docente na Universidade de Cuiabá.

³ Doutorado na FOB-USP

⁴ Docente Adjunta do curso de Bichectomia IMMAPE.

INTRODUÇÃO

A ultrassonografia com aparelhos ultra portáteis (POCUS) (figura 1) no dia a dia do profissional que atua na Harmonização Orofacial permite que o profissional atue na estética com segurança e previsibilidade de resultados e, posteriormente, caso ocorra complicações e no follow-up¹⁻². A face é um dos locais com maior variação anatômica do corpo humano, além de sofrer mudanças ao longo da vida decorrentes do processo de envelhecimento³⁻⁴.

POCUS tem sido amplamente utilizado em várias especialidades da saúde ao nível mundial por ser uma ferramenta de diagnóstico rápido em diversas regiões da face, tais como, temporal, frontal, periocular, terço médio da face, nasal, parótida, ATMs, bola de bichat, labial, mentual, região do pescoço e complexo vascular, assim como a visualização de diversos materiais estéticos, em todos os tempos operatórios (figuras 2 e 3)⁵⁻⁶. Os clínicos da estética facial vêm se aventurando ao inserir produtos sem conhecer e ver a anatomia levando a complicações inflamatórias, infecciosas, cegueira e óbito⁷. O uso relativamente rápido do POCUS para avaliação das estruturas mencionadas anteriormente e das complicações que ocasionam processos inflamatórios, infecciosos e granulomatosos traz segurança para o clínico que busca excelência e segurança durante a atuação dos diversos procedimentos da face⁵⁻⁶. Os aparelhos ultra portáteis são pequenos, de alta frequência e boa resolução, características fundamentais de um bom aparelho ultrassonográfico de diagnóstico rápido. Além disso, a POCUS realizada pelo profissional da estética facial reduz a necessidade de envolver um segundo profissional ou de transferir o paciente para uma sala de ultrassonografia em ambiente unicamente médico⁶.

Ciente que os clínicos ainda não se encontram preparados para interpretar imagens de ultrassonografia, a inteligência artificial (IA) (figura 4) vem sendo gradualmente adicionada ao software de leitura das imagens eliminando dúvidas no diagnóstico anatômico, permitindo e facilitando o clínico inexperiente a também se beneficiar desta ferramenta diagnóstica com um menor tempo na curva de aprendizado⁸⁻⁹.

DISCUSSÃO

A inteligência artificial (IA) está sendo cada vez mais aplicada em várias áreas da saúde, incluindo o uso do *Point of Care Ultrasound* (POCUS), que é um método rápido de diagnóstico por ultrassom realizado por profissionais não especializados na técnica. Esse método tem ganhado popularidade, especialmente em diagnósticos rápidos de diversas

condições médicas, conforme apontado no artigo publicado pela *Annals of Medicine and Surgery* (London, 2021)¹⁰⁻¹¹.

No contexto do POCUS, a IA pode desempenhar um papel valioso na interpretação das imagens de ultrassom, auxiliando na análise e contribuindo para diagnósticos mais precisos. A IA pode destacar as imagens mais relevantes para o profissional de saúde, oferecendo suporte nas decisões clínicas e contribui para o aprimoramento do treinamento e da educação dos profissionais, promovendo a padronização e a garantia da qualidade dos procedimentos^{8-9, 11}.

No entanto, o uso da IA na saúde traz consigo uma série de desafios éticos. Um deles é a questão da privacidade e segurança dos dados, já que o armazenamento e o uso de informações sensíveis, como dados médicos dos pacientes, exigem proteção rigorosa. Outro ponto relevante é o viés algorítmico, que compromete a justiça nos diagnósticos, pois os algoritmos precisam ser desenvolvidos de forma a garantir imparcialidade, especialmente no tratamento de pacientes de diferentes etnias, grupos raciais e classes socioeconômicas, evitando desigualdades no cuidado¹²⁻¹⁴.

Além disso, a interpretabilidade e a transparência das decisões da IA são aspectos cruciais. Os profissionais de saúde precisam entender como a IA chega a suas conclusões, garantindo que as decisões sejam compreensíveis e justificáveis. A responsabilidade médica em casos de erros ou diagnósticos incorretos também levanta questões importantes, uma vez que é necessário definir quem será responsabilizado – o profissional que utilizou a tecnologia ou o desenvolvedor do algoritmo. Por fim, o treinamento adequado dos algoritmos é essencial para garantir que eles funcionem corretamente, o que exige supervisão constante e uso de dados confiáveis¹⁵⁻¹⁷. Esses desafios ressaltam a importância de uma abordagem cuidadosa no uso da IA na medicina, para que seus benefícios possam ser aproveitados sem comprometer a segurança, a ética e a qualidade no tratamento dos pacientes.

A ferramenta IA é especialmente importante em regiões do rosto que apresentam complexidades anatômicas, como as áreas temporal e labial. A anatomia da região temporal é complexa, envolvendo o músculo temporal, artéria temporal superficial e veias associadas, além do nervo facial. As variações individuais na posição da artéria e das ramificações nervosas podem aumentar o risco de complicações durante procedimentos estéticos, como preenchimentos faciais. A perda de volume temporal pode ser tratada por meio da injeção de preenchimento de tecido mole no plano subdérmico ou supraperiosteal, respeitando as zonas

de perigo regionais. Essas zonas de perigo estão localizadas na Camada 3 (localização do ramo anterior da artéria temporal superficial), Camada 4 (plano intrafascial; localização dos ramos motores do nervo facial), Camada 6 (localização da veia zigomático-temporal medial (sentinela) e Camada 10 (localização das artérias temporais profundas anterior e posterior). O posicionamento do produto, portanto, precisa ser cuidadosamente avaliado e equilibrado, pesando a segurança principalmente ao considerar o resultado estético. O uso da ultrassonografia permite visualizar essas estruturas em tempo real, ajudando a evitar complicações vasculares e neurológicas, como necrose tecidual e paralisia temporária¹⁸.

Os lábios e a boca desempenham um papel indispensável na vocalização, mastigação e estética facial. Vários fatores nocivos podem alterar e destruir a estrutura original e a aparência dos lábios e da área anatômica ao redor da boca. Na área labial, a presença de vasos como a artéria labial superior e inferior, bem como suas variações anatômicas, exige uma precisão extrema durante procedimentos estéticos. A ultrassonografia POCUS permite ao clínico identificar essas estruturas com clareza, reduzindo o risco de injeções acidentais em vasos, que podem resultar em embolia ou necrose. Além disso, a análise da espessura e densidade do tecido ajuda a determinar o plano de injeção mais seguro e eficaz¹⁹.

A variabilidade anatômica entre os pacientes destaca ainda mais a importância do uso do POCUS, pois oferece uma abordagem personalizada, permitindo ao clínico ajustar os procedimentos de acordo com a anatomia individual. Isso não só aumenta a segurança dos procedimentos estéticos, mas também melhora a precisão dos resultados, garantindo uma melhor experiência para o paciente²⁰. O uso de IA em POCUS melhora significativamente a precisão diagnóstica, auxiliando na detecção de anomalias que podem passar despercebidas até pelos clínicos mais experientes. Isso é crucial em áreas como a região temporal e labial, onde a anatomia é complexa e detalhada. Destaca-se ainda que a IA oferece análise em tempo real, reduzindo o erro humano e possibilitando diagnósticos mais precisos²¹. As aplicações de IA em POCUS não apenas automatizam a interpretação de imagens, mas também fornecem orientações para uma melhor aquisição de imagens. Isso é particularmente útil para médicos que estão aprendendo a usar o ultrassom. Nas regiões faciais, como a labial, pequenos ajustes no posicionamento do transdutor podem fazer uma grande diferença na qualidade da imagem. A IA pode fornecer feedback em tempo real para garantir que a imagem capturada seja a ideal²².

Em procedimentos estéticos, especialmente em áreas delicadas do rosto, como os

lábios e a região temporal, o uso de POCUS com IA pode proporcionar imagens de alta resolução que ajudam a identificar estruturas críticas, como vasos sanguíneos, evitando complicações e melhorando os resultados dos tratamentos²³. A IA torna o POCUS mais acessível e confiável em diferentes contextos clínicos, permitindo que os médicos obtenham resultados consistentes, independentemente do nível de experiência. Isso é essencial em áreas que requerem alta precisão, como as estruturas faciais, onde até pequenas variações podem impactar o diagnóstico e a intervenção²⁴. Assim, a combinação de POCUS com IA não só aumenta a precisão e segurança nos procedimentos, como também melhora o aprendizado e a acessibilidade da tecnologia, sendo especialmente valiosa nas regiões anatômicas complexas do rosto.

Figura 1 - Ultrassom point of care (POCUS) marca comercial Mobisson, Clarius L20 HD3 (esquerda), frequência: De 8 a 20 Mhz Profundidade Máxima: 4 cm e Clarius L15 HD3 (direita) Profundidade Máxima: 7 cm e frequência: De 5 a 15 Mhz., ambos Transdutor Linear de Máxima Frequência, indicado para estruturas faciais superficiais.

Fonte: https://mobissom.com.br/clarius/equipamentos/

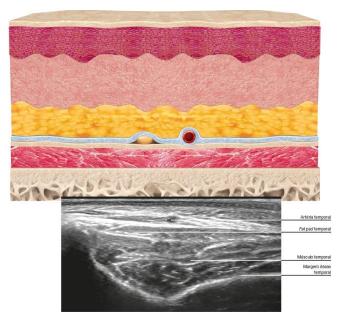


Figura 2 – A estratigrafia da região temporal - ultrassonografia

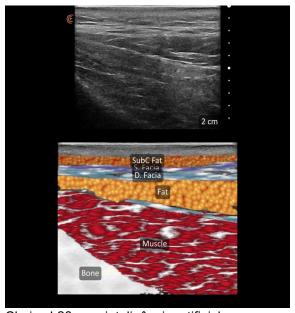


Figura 3 - Ultrassonografia Clarius L20 com inteligência artificial

Figura 4 – Ultrassonografia região labial com inteligência artificial (Ultrassonografia Clarius L20)

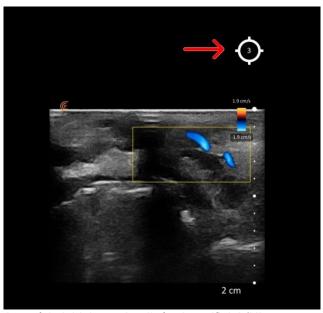


Figura 5 - profundidade de artéria labial com inteligência artificial (Ultrassonografia Clarius L20)

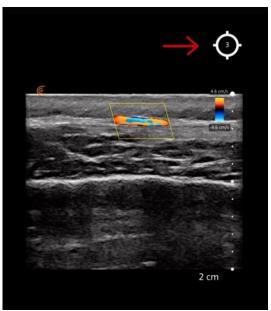


Figura 6 - Artéria temporal - Marcação da profundidade com inteligência artificial (Ultrassonografia Clarius L20)

CONCLUSÕES

No quarto ano da terceira década do século XXI e após cinco anos da validação da especialidade Harmonização Orofacial pelo Conselho Federal de Odontologia observa-se um aumento abrupto de novos materiais surgindo no mercado nacional, complicações relacionadas, e pouca ciência robusta para resguardar a segurança do paciente e profissional com base em uma prática clínica baseada em evidências. O uso da ultrassonografia point of care (POCUS) torna-se imprescindível dispor de um método de diagnóstico rápido, seguro e preciso. A POCUS com inteligência artificial visa salvar vidas e conferir maior dignidade à atuação do profissional que atua na estética da face.

REFERÊNCIAS

- 1. Hashim A, Tahir MJ, Ullah I, Asghar MS, Siddiqi H, Yousaf Z. The utility of point of care ultrasonography (POCUS). *Ann Med Surg*. 2021;71:102982.
- 2. Maraña HF, Oliveira RF, Sousa SA. Ultrasonography in Facial Aesthetic Procedures: Improving Safety and Outcomes. *J Cosmet Dermatol*. 2020;19(6):1397-1404.
- 3. Pessa JE, Zadoo VP, Garza JR, et al. The anatomy of the aging face: volume loss and facial morphology. *Plast Reconstr Surg*. 2002;110(3):710-717.
- 4. Kahn DM, Shaw RB. Aging of the bony orbit: a three-dimensional computed tomographic study. *Aesthet Surg J.* 2008;28(2):145-151.
- 5. Wortsman X. Ultrasound in dermatology and aesthetic medicine: Clinical, diagnostic, and therapeutic aspects. *J Am Acad Dermatol.* 2019;81(4):890-897.

- 6. Kassir M, Kolluru A, Kassir R. Applications of ultrasound in facial plastic surgery. *J Cosmet Dermatol.* 2020;19(2):317-322.
- 7. Kim HJ, Jung HD, Yoon SP, Park SH, Kim IG. Vascular complications of hyaluronic acid fillers and their immediate management. *J Plast Reconstr Aesthet Surg*. 2011;64(3):e64-e69.
- 8. Gong T, et al. Artificial Intelligence in Ultrasound: Opportunities and Challenges. *Ultrasound Med Biol.* 2020;46(9):2337-2351.
- Cheng J, et al. Deep Learning for Medical Image Analysis: A Comprehensive Review. Med Image Anal. 2020;2020:101891.
- 10. Kohli MD, et al. Point-of-Care Ultrasound: A Review of Its Use in Emergency Medicine and Its Applications in the Evaluation of Various Conditions. *Ann Med Surg.* 2021;71:102982.
- 11. Albrecht MA, et al. The Role of Artificial Intelligence in Point-of-Care Ultrasound. *J Clin Ultrasound*. 2021;49(1):2-8.
- 12. Ghazal T, et al. Ethical Implications of Artificial Intelligence in Health Care: A Systematic Review. *Health Informatics J.* 2021;27(1):146-157.
- 13. Obermeyer Z, et al. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. *Science*. 2019;366(6464):447-453.
- 14. Luchini C, et al. Artificial Intelligence and the Future of Medicine: Ethical Considerations. *J Med Ethics*. 2020;46(2):79-84.
- 15. Hoffman JS, et al. The Ethics of Artificial Intelligence in Health Care: A Systematic Review. *J Med Internet Res.* 2019;21(10):e16295.
- 16. Challen R, et al. Artificial Intelligence, Bias and Clinical Safety. *Health Informatics J*. 2019;25(4):300-309.
- 17. Topol EJ. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. *Nature Med.* 2019;25(1):44-56.
- 18. Wang H, et al. Use of Point-of-Care Ultrasound in Aesthetic Medicine: A Review. *J Cosmet Dermatol*. 2020;19(2):317-322.
- 19. Lee C, et al. Anatomical Variations of the Lip and Its Implications for Aesthetic Procedures: A Study Utilizing Ultrasound. *Aesthet Surg J.* 2021;41(3):NP1174-NP1182.
- 20. Almeida M, et al. Personalized Approaches in Aesthetic Medicine: The Role of Point-of-Care Ultrasound in Tailoring Procedures to Individual Anatomy. *J Aesthetic Med*. 2021;3(1):21-28.
- 21. Möller A, et al. Artificial Intelligence in Point-of-Care Ultrasound: A Review of the Current Status and Future Directions. *Ultrasound Med Biol.* 2020;46(9):2337-2351.
- 22. Klein S, et al. Machine Learning in Point-of-Care Ultrasound: A Review of Current Applications and Future Directions. *Ultrasound Clinics*. 2021;16(3):509-516.
- 23. Burgess L, et al. The Role of Ultrasound in Aesthetic Medicine: An Overview of Current Applications and Future Perspectives. *J Cosmet Dermatol*. 2021;20(1):21-28.
- 24. Khalil M, et al. Artificial Intelligence in Ultrasound: Improving Accessibility and Accuracy in Clinical Practice. *J Ultrasound Med*. 2022;41(3):601-610.